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1 Introduction
In physical applications, we often encounter the phenomenon of symmetry breaking, in which the

symmetry group G of a system is reduced to a subgroup H ⊆ G. An eigenstate of the system carries
an irreducible representation π of the symmetry group G, and when the symmetry is reduced, π is
decomposed into a direct sum of irreducible representations

⊕
i πi(H) of the smaller symmetry group.

This process is known as branching. For finite groups, the branching rules can be derived from the
character table. However, for Lie groups the problem is more complicated. In the first section of this
article, we will discuss the branching rules of classical Lie algebras, including the unitary algebra u(n)C,
the orthogonal algebra so(n)C, and the symplectic algebra sp(2n)C.1
Another important application of the branching rules is the explicit construction of the representation

bases, known as the Gelfand-Tsetlin (GT) bases. The highest weight does not directly determine the
1Here we only consider the complexified Lie algebras, and we omit the C label later on.
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basis vectors of the irreducible representation. Gelfand and Tsetlin found that the bases can be labeled by
the representations of the subalgebra chain, which are obtained by the branching rules. This formalism
is depicted in Fig. 1. This labeling requires two properties:

• The branching rule ismultiplicity-free: for each hi → hi+1 in the chain, every representation of
hi+1 can only appear once.

• The subalgebra chain terminates in a Lie algebra with only one-dimensional representations. In
practice, it is chosen as u(1) = so(2) = sp(2).

As we will see in the following sections, the subalgebra chain u(n) → u(n− 1) → · · · → u(1) and
so(n) → so(n − 1) → · · · → so(2) satisfy these conditions, whereas the chain sp(2n) → sp(2n −
2) → · · · → sp(2) does not, as the branching is not multiplicity-free. We will introduce the correct
construction of the GT basis for sp(2n) in Sec. 3.3.

Figure 1: Graphic representation of the Gelfand-Tsetlin basis. Each box indicates an irreducible repre-
sentation. For each vector in the representation space V of π(g), it is in the representation space Vi of
πi(h). The basis vector can then be uniquely labeled by (π(g), πi1(h1), πi2(h2), · · · ).

2 Branching rules of classical Lie algebras
The branching rules of classical Lie algebras can be classified into two types:

• Type I: The branching rules within the same family of classical Lie algebras, such as u(n) →
u(n− 1), so(n) → so(n− 1), and sp(2n) → sp(2n− 2).

• Type II: The branching rules between different families of classical Lie algebras, such as u(n) →
so(n), u(n) → sp(n) and many others.

The type-I branching rules are easier to solve, and they are important for construction the GT basis.
Type-II branching rules are more complicated. For u(n) → so(n) and u(n) → sp(n), the branching
rules is determined by the Young tableau, which is discussed in detail in [1]. For the R-type subalge-
bras, in which the Dynkin diagram of the subalgebra is a subgraph of the extended Dynkin diagram
of the original algebra, the branching rules can be obtained by directly deleting nodes from the Dynkin
diagram, as discussed in [2].

2.1 u(n) → u(n− 1) branching rule
u(n) is not a semisimple Lie algebra, since it has the Abelian ideal u(1), and is isomorphic to su(n)⊕

u(1). However, it provides a simple way to characterize the root system. The roots lie in a (n − 1)-
dimensional hyperplane perpendicular to e1 + e2 + · · · + en in a n-dimensional space, with the form
ei − ej , 1 ≤ i, j ≤ n. The n− 1 fundamental roots are ei − ei+1, 1 ≤ i ≤ n− 1.
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All irreducible representations of u(n) can be labeled by the Young tableau [λ] = (λ1, λ2, · · · , λn),
where λi is the number of boxes in the i-th row, satisfying the condition λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The
corresponding highest weight is

M =

n−1∑
i=1

(λi − λi+1)ωi (1)

where ωi is the fundamental weight (the Dynkin basis).
We consider the tensor Young tableaux [λ]T , which spans the representation space of the irreducible

representation [λ]. The tensor Young tableaux are constructed by filling the boxes with the numbers
1, 2, · · · , n, and every number can appear more than once. The requirement for the filling is that the
numbers in each row must be non-decreasing, and the numbers in each column must be increasing [3].
The number n is restricted to the boxes [λ]i,j , in which λi+1 ≤ j ≤ λi. This is illustrated in Fig. 2.

Figure 2: Possible locations of n in the Young tableau.

Removing n from the tensor Young tableau of u(n) will result in a tensor Young tableau of u(n− 1).
Since the irreducible representation is uniquely determined by the shape of the Young tableau, we only
need to consider the shape [µ] after removing n. Apparently, µi ≤ λi. Moreover, because the block
[λ]i,λi+1

is never filled with n, we have µi ≥ λi+1. Then µi ≤ µi+1, and [µ] is a valid Young tableau.
Thus, the branching rule u(n) → u(n− 1) is given by

[λ1, λ2, · · · , λn] → [µ1, µ2, · · · , µn−1]

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn
(2)

This is known as the ”interlacing condition”. To check the multiplicity, we compare the dimension
of [λ] with the sum of dimensions of all [µ]. The dimension is given by the hook-length formula:

d[λ](u(n)) =

n−1∏
i=1

1

i!
·

n∏
j<k

(λj − λk − j + k) (3)

We can verify

∑
λi≤µi≤λi+1

n−1∏
j<k

(µj − µk − j + k) =
1

(n− 1)!

n∏
j<k

(λj − λk − j + k) (4)

Therefore d[λ](u(n)) =
∑

[µ] d[µ](u(n − 1)), where [µ] satisfies Eq. (2). Hence, the branching rule is
multiplicity-free.
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2.2 so(n) → so(n− 1) branching rule
2.2.1 Review of root system of so(n)

The positive roots of so(n) in the orthonormal basis are

for so(2n) : ei ± ej 1 ≤ i < j ≤ n

for so(2n+ 1) : ei ± ej 1 ≤ i < j ≤ n and ± ei 1 ≤ i ≤ n
(5)

The fundamental weights are

for so(2n) : ωi = e1 + e2 + · · · ei i = 1, 2, · · ·n− 2

ωn−1 =
1

2
(e1 + e2 + · · · en−1 − en)

ωn =
1

2
(e1 + e2 + · · · en−1 + en)

for so(2n+ 1) : ωi = e1 + e2 + · · · ei i = 1, 2, · · ·n− 1

ωn =
1

2
(e1 + e2 + · · · en−1 + en)

(6)

The highest weights take the form M =
∑n

i=1miωi, mi ∈ Z+. Under the orthonormal basis,
M =

∑n
i=1 λiei, in which

for so(2n) : λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ |λn|
for so(2n+ 1) : λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn ≥ 0

(7)

λi are all integers (corresponding to tensor representations labeled by Young tableaux) or all half-
integers (corresponding to spinor representations, not labeled by Young tableaux). Therefore we will
adopt a different method based on theWeyl character formula to derive the general branching rule.

2.2.2 The Weyl character formula

The Weyl character formula is [4]

χ(H) =

∑
w∈W det(w) exp(⟨w(M + δ),H⟩)∑

w∈W det(w) exp(⟨wδ,H⟩)
(8)

Here H is an element of the Cartan subalgebra,W is the Weyl group,M is the highest weight, and
δ is the half of the sum of positive roots. The denominator can also be written as

∆ =
∑
w∈W

det(w) exp(⟨wδ,H⟩) =
∏

α∈∆+

(e⟨α,H⟩/2 − e−⟨α,H⟩/2) (9)

The Weyl group of so(2n + 1) is Σ(n) = Sn ⋉ Zn
2 , and the Weyl group of so(2n) is the subgroup

Σ0(n) of Σ(n), consisting of signed permutations with an even number of sign changes [4].

2.2.3 Branching rule of so(2n+ 1) → so(2n)

The discussion in this and the following part follows [5].
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From Eq. (5), so(2n + 1) has n additional roots e1, · · · , en compared to so(2n). Then the Weyl
denominators have the relation:

∆so(2n+1) = ∆so(2n) ·
n∏

i=1

(eHi/2 − e−Hi/2) (10)

Here we denoted Hi = ⟨ei,H⟩. Therefore

∆so(2n)χM,so(2n+1)

=
∑
σ∈Sn

det(σ)
∑
τ∈Zn

2

det(τ)e⟨τσ(M+δ),H⟩
n∏

i=1

(eHi/2 − e−Hi/2)−1

=
∑
σ∈Sn

det(σ)
n∏

i=1

(
e[σ(M+δ)]iHi − e−[σ(M+δ)]iHi

eHi/2 − e−Hi/2

)

=
∑
σ∈Sn

det(σ)
n∏

i=1

 ∑
|k|<[σ(M+δ′)]i

ekHi


=
∑
σ∈Sn

det(σ)
n∏

i=1

 ∑
|k|<λi+n−i

ekHσ(i)



(11)

Here δ′ = δ− 1

2

∑n
i=1 ei is the half of the sum of positive roots of so(2n). The last line is obtained by

the variable change i→ σ(i).
It is apparent that this is the determinant of the matrixMij =

∑
|k|<λi+n−i e

kHj , and we can subtract
the (i+ 1)-th row from the i-th row:

∆so(2n)χM,so(2n+1)

=
∑
σ∈Sn

det(σ)
n∏

i=1

 ∑
λi+1+n−i<|k|<λi+n−i

ekHσ(i)


=
∑
σ∈Sn

det(σ)
∑

λi+1+n−i<|pi|<λi+n−i

 n∏
j=1

epjHσ(j)


=
∑
σ∈Sn

det(σ)
∑

λi+1+n−i<|pi|<λi+n−i

e⟨σ(p),H⟩

(12)

Define τi ∈ {0, 1} by (−1)τi = sgn(pi) for 1 ≤ i ≤ n − 1, and let si = τipi. Choose τn such that∑n
i=1 τi mod2 = 0, then the corresponding signed permutation τ = (τ1, . . . , τn) ∈ Zn

2 lies in Σ0(n).
Also, s = (s1, . . . , sn) ∈ Zn. Therefore,∑

λi+1+n−i<|pi|<λi+n−i

e⟨σ(p),H⟩

=
∑

τ∈Zn
2 ∪Σ0(n)

∑
λi+1+n−i<si<λi+n−i,|sn|<λn

e⟨σ(τs),H⟩

=
∑

τ∈Zn
2 ∪Σ0(n)

∑
λi+1<µi<λi,|µn|<λn

e⟨σ(τ(µ+δ′)),H⟩

(13)
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Here we set s = µ+ δ′. Substituting into Eq. (12), we obtain

∆so(2n)χM,so(2n+1)

=
∑

w∈Σ0(n)

det(w)
∑

λi+1<µi<λi,|µn|<λn

e⟨w(µ+δ′),H⟩

=
∑

λi+1<µi<λi,|µn|<λn

∆so(2n)χµ,so(2n)

(14)

This proves the branching rule so(2n+ 1) → so(2n):

[λ1, λ2, · · · , λn] → [µ1, µ2, · · · , µn]

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ |µn|
(15)

Each irreducible component [µ] appears only once in the decomposition, hence the branching rule is
multiplicity-free.

2.2.4 Branching rule of so(2n) → so(2n− 1)

In this case, the two Lie algebras have different ranks, and we utilize the u(n) → u(n− 1) branching
rule as an intermediate step. The whole process is similar to the previous case but more complicated,
and we will only show the main steps. The details can be found in [5].
First, using Eq. (2), since the root system of u(n − 1) embeds naturally into that of u(n), we can

obtain
det(eαiHj )∏n−1

i=1 (e
Hi/2 − e−Hi/2)

=
∑

βi∈Z+1/2,αi+1<βi<αi

det(eβiHj ) (16)

Then, we observe that

∆so(2n)(H1, · · · ,Hn−1, 0) =

n−1∏
i=1

(eHi/2 − e−Hi/2) ·∆so(2n−1)(H1, · · · ,Hn−1) (17)

Thus

∆so(2n−1)(H1, · · · ,Hn−1)χλ,so(2n)(H1, · · · ,Hn−1, 0)

=
∑

τ∈Zn
2 ,det τ=1

det(e[τ(λ+δ)]iHj )∏n−1
i=1 (e

Hi/2 − e−Hi/2)

=
∑

τ∈Zn
2 ,det τ=1

(−1)κ(τ)
∑

α=sort(τ(λ+δ)),βi∈Z+1/2
αi+1<βi<αi

det(eβiHj )

=
∑

µi∈Z,|λi+1|<µi<|λi|

∆so(2n−1)(H1, · · · ,Hn−1)χµ,so(2n−1)(H1, · · · ,Hn−1)

(18)

Therefore, the branching rule so(2n) → so(2n− 1) is given by the condition2:

[λ1, λ2, · · ·λn] → [µ1, µ2, · · ·µn−1]

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ |λn|
(19)

2For the tensor representations with λi ∈ Z+. One can verify that both Eq. (15) and Eq. (19) reduces to the u(n) → u(n−1)
branching rule Eq. (2).
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Each component [µ] still appears only once. Then the branching ismultiplicity-free.

3 Gelfand-Tsetlin bases

3.1 GT bases of u(n) and so(n)

As mentioned in Sec. 1, the GT bases are constructed from the irreducible representations of the sub-
algebra chain. For u(n) → u(n − 1) → · · · → u(1) and so(n) → so(n − 1) → · · · → so(2), the
branching rules are multiplicity-free, and the bases can be uniquely labeled by the irreducible represen-
tations of the subalgebras. Specifically, they are in the form of∣∣∣∣∣∣∣∣

λn1 λn2 · · · λn,n−1 λnn
λn−1,1 λn−1,2 · · · λn−1,n−1

· · · · · · · · ·
λ11

∣∣∣∣∣∣∣∣ (20)

for u(n), and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2n+1,1 λ2n+1,2 · · · λ2n+1,n−1 λ2n+1,n

λ2n,1 λ2n,2 · · · λ2n,n−1 λ2n,n
λ2n−1,1 λ2n−1,2 · · · λ2n−1,n−1

λ2n−2,1 λ2n−2,2 · · · λ2n−2,n−1

· · · · · · · · ·
λ31
λ21

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(21)

for so(2n+1) (so(2n) is obtained by removing a line). The i-th row of the pattern is the irreducible
representation of u(n − i + 1) or so(2n − i + 2). They satisfy the conditions Eq. (2), Eq. (15), and
Eq. (19):

• u(n) : λi+1,j ≥ λij ≥ λi+1,j+1

• so(n) : λi+1,j ≥ λi,j ≥ λi+1,j+1, λ2i+1,i ≥ |λ2i,i|, and λ2i−1,i−1 ≥ |λ2i,i|.

The actions of the generators of u(n) and so(n) on the GT bases (denoted as ξΛ) can be explicitly
calculated [6, 7]. For u(n), we have

Ek,kξΛ =

(
k∑

i=1

λki −
k−1∑
i=1

λk−1,i

)
ξΛ,

Ek,k+1ξΛ = −
k∑

i=1

∏k+1
j=1 (lki − lk+1,j)∏k
j=1,j ̸=i(lki − lkj)

ξΛ+δki

Ek+1,kξΛ =

k∑
i=1

∏k−1
j=1 (lki − lk−1,j)∏k
j=1,j ̸=i(lki − lkj)

ξΛ−δki

(22)

Where lij = λij − i+ 1, and Λ± δki is obtained by replacing λki with λki ± 1. Other generators are
obtained by Ek,k+h = [Ek,k+1, [Ek+1,k+2, [· · · ]]] and Ek+h,k = (−1)h[Ek+1,k, [Ek+2,k+1, [· · · ]]].
For so(n), the result is very complex. It is discussed in [7], which we will not repeat here.
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A simple example of Eq. (22) is n = 2, then the GT basis is |(λ21, λ22), (λ11)⟩. We can convert this
into the angular momentum basis |jm⟩. Because

Jz|jm⟩ = 1

2
(E11 − E22)|jm⟩ = m|jm⟩ (23)

and the definition of the highest weight implies

E11|jj⟩ = λ21|jj⟩ E22|jj⟩ = λ22|jj⟩
E11|jm⟩ = λ11|jm⟩

(24)

Moreover, E11 + E22 is the identity operator on the weight space, with eigenvalue equal to the trace
of the representation. Then (E11 + E22)|jm⟩ = f(j)|jm⟩. So E22|jm⟩ = (λ21 + λ22 − λ11)|jm⟩.
Combining these equations, we have

j =
1

2
(λ21 − λ22) m = λ11 −

1

2
(λ21 + λ22) (25)

We can verify that λ21 ≥ λ11 ≥ λ22 implies −j ≤ m ≤ j.
The action of the off-diagonal generators is given by

E12|jm⟩ =
√

(j −m)(j +m+ 1)|j,m+ 1⟩

E21|jm⟩ =
√

(j +m)(j −m+ 1)|j,m− 1⟩
(26)

Substituting Eq. (25), this is consistent with Eq. (22).
As another example, we consider n = 3, and the GT basis is |(λ31, λ32, λ33), (λ21, λ22), (λ11)⟩. In

physics, the isospin, hypercharge, and baryon number operators are defined as I3 =
1

2
(E11 −E22),

Y =
1

3
(E11 + E22 − 2E33), and B =

1

3
(E11 + E22 + E33). Using Eq. (25) and Eq. (22), the basis

vector takes the form

|ψ⟩ =
∣∣∣∣(λ31, λ32, λ33), (I + Y

2
+B,−I + Y

2
+B), (I3 +

Y

2
+B)

〉
λ31 + λ32 + λ33 = 3B (27)

We usually consider su(3), and choose λ33 = 0. Using Eq. (1), λ31 = m1 +m2, λ32 = m2, where
m1,m2 ∈ Z is the highest weight in the Dynkin basis. Thus B =

1

3
(m1 + 2m2). From the interlacing

condition, we obtain the possible values of Y, I, I3:

I = 0,
1

2
, 1, · · · , 1

2
(m1 +m2)

Y = −1

3
(2m1 +m2),−

1

3
(2m1 +m2) + 1, · · · , 1

3
(m1 + 2m2)

I3 = −I,−I + 1, · · · , I

(28)

this is consistent with the standard model [7].

3.2 Construction of the GT bases I: Mickelsson-Zhelobenko algebra
In this and the following section, we follow [6] and discuss the general construction of the GT bases,

based on the Mickelsson-Zhelobenko algebra, and the (twisted) Yangian. Because the construction
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is quite complicated, we will only give a brief introduction.
Let k be the subalgebra of g. Its Cartan decomposition is k = h⊕ k+ ⊕ k−, where k+ is the positive

root system of k. Let U(g) be the universal enveloping algebra, and R(h) its field of fractions over the
Cartan subalgebra h. Define U ′(g) = U(g) ⊗ R(h). Let J = U ′(g)k+, and its normalizer NormJ =

{u ∈ U ′(g)|uJ ⊆ J}. TheMickelsson-Zhelobenko (M-Z) algebra is defined as the quotient

Z(g, k) = NormJ/J (29)

The algebraic structure of Z(g, k) is described by the external projector. For each α ∈ k+, define
the series (δ is the half of the sum of positive roots):

pα =

∞∑
k=0

ek−αe
k
α

(−1)k

k!
∏k

j=1(hα + ⟨δ, hα⟩+ j)
(30)

Define the external projector as p =
∏

α∈k+ pα, then we can prove eαp = pe−α = 0. Let β be the
positive weights in g+\k+. Then the elements zβ = peβ are generators of the M-Z algebra:

Z(g, k) =

∏
β

z
kβ

β

∣∣∣∣kβ ∈ Z+

 (31)

Using these two important properties, we can easily construct the subspace V + = {v ∈ V |k+v = 0}
containing k-highest vectors of any vector space V :

V + =

∏
β

z
kβ

β · v0
∣∣∣∣kβ ∈ Z+

 (32)

for arbitrary v0 ∈ V +.
The simplest example is Z(u(n), u(n− 1)), in which

pij =

∞∑
k=0

Ek
jiE

k
ij

(−1)k

k!(hi − hj + 1) · · · (hi − hj + k)

p =

n−1∏
i<j

pij zni = pEni, zin = pEin

(33)

Denote the representation space of g with highest weight λ as L(λ), Then

L(λ)+ =

{
n−1∏
i=1

zki
ni · ξ

∣∣∣∣ki ∈ Z+, zinξ = 0

}
(34)

consists of the highest vectors of u(n− 1), that is, EijL(λ)
+ = 0 for 1 ≤ i < j ≤ n− 1.

Moreover, from the explicit matrix expression of z, we found that

ξµ =

n−1∏
i=1

zλi−µi

ni · ξ (35)

has weight µ with respect to the Cartan subalgebra of u(n− 1). It spans the space L(λ)+µ .
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We require the following two conditions so that ξµ is non-zero:

• ki ≥ 0, so µi ≤ λi.

• zλi−µi

ni ξ has weight (λ1 · · ·λi−1, µi, λi+1 · · ·λn−1) with respect to the Cartan subalgebra of
u(n− 1), then λi+1 ≥ µi.

Combining these two conditions, we return to the familiar interlacing condition Eq. (2). Because for
each µ there is only one vector ξµ defined in Eq. (35), the branching is multiplicity-free.
Other M-Z algebras are given out in [6]. We change Eij to Fij = Eij − θijE−j,−i, in which

θij = 1 for the orthogonal algebras and sgni · sgnj for the symplectic algebra. −n ≤ i, j ≤ n.
For so(2n) and sp(2n) the i = 0 term is omitted. Cancelling i = ±n at each time, the M-Z al-
gebras Z(Bn, Bn−1) = Z(so(2n + 1), so(2n − 1)), Z(Cn, Cn−1) = Z(sp(2n), sp(2n − 2)) and
Z(Dn, Dn−1) = Z(so(2n), so(2n− 2)) can be calculated.

3.3 Construction of the GT bases II: Yangians and the multiplicity formula
In this section, we explore the fundamental connection between the M-Z algebra and the Yangian

algebra. The Yangian Y (N) is an infinite-dimensional Hopf algebra generated by operator-valued func-
tions, defined by the relation

(u− v)[tab(u), tcd(v)] = tcb(u)tad(v)− tcb(v)tad(u) 1 ≤ a, b, c, d ≤ N (36)

The twisted Yangian Y ±(N) is defined by a transformation on the Yangian. We considerN = 2 as
an example, then the elements are:

sab(u) = θnbtan(u)t−b,−n(−u) + θ−n,bta,−n(u)t−b,n(−u) a, b = ±n (37)

It is denoted Y ±(2) for θ corresponding to the orthogonal or symplectic case, respectively.
The Yangian arises naturally from the quantization (q-deform) of the universal enveloping algebra

of the Lie algebra g [6, 8]. For each classical Lie algebra we may address a corresponding Yangian, as
shown in Table 1.

Lie algebra An = su(n+ 1) Bn = so(2n+ 1) Cn = sp(2n) Dn = so(2n)
Yangian Y (n+ 1) Y +(2n+ 1) Y −(2n) Y +(2n)

Table 1: The correspondence between classical Lie algebras and their Yangians.

Molev [6] established a homomorphism between the twisted Yangian and the M-Z algebra:

Y +(2) → Z(Bn, Bn−1) : sab(u) → −u−2nZab(u)

Y −(2) → Z(Cn, Cn−1) : sab(u) → (u+
1

2
)u−2nZab(u)

Y +(2) → Z(Dn, Dn−1) : sab(u) → −2u−2n+2Zab(u)

(38)

Here a, b = ±n, and Zab(u) is a generating function whose coefficients are elements of the M-Z
algebra.
The Y ±(2) module V (λ)+µ , homomorphic to L(λ)+µ by Eq. (38), can be decomposed into a direct

sum of the irreducible representations of the Yangian, whose dimension is well known. Consequently,
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the dimension of L(λ)+µ , which corresponds to the multiplicity m(λ → µ) in the branching, can be
naturally determined.
For the case sp(2n) → sp(2n− 2) = Cn → Cn−1 that we are interested in, we can obtain

mC(λ→ µ) =

n∏
i=1

(αi − βi + 1)

α1 = −1

2
αi = min(λi−1, µi−1)− i+

1

2
βi = max(λi, µi)− i+

1

2

(39)

Apparently,mC ̸= 1, indicating the directly constructed GT basis using the subalgebra chain Cn →
Cn−1 → · · · → C1 is invalid. However, we can introduce a set of auxiliary weights λ′ij , 1 ≤ j ≤
i, 1 ≤ i ≤ n, which satisfies

λi,j−1 ≥ λ′i,j ≥ λi,j λi−1,j−1 ≥ λ′i,j ≥ λi−1,j (40)

Then the number of possible configurations of λ′ij is exactly mC . The auxiliary weights λ′ij can be
interpreted as the highest weight of a virtual Lie algebra sp(2n − 1). They provide a multiplicity-free
parametrization of the basis vectors, thereby facilitating the construction of the GT basis for sp(2n):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λn1 λn2 · · · λn,n−1 λnn
λ′n1 λ′n2 · · · λ′n,n−1 λ′nn
λn−1,1 λn−1,2 · · · λn−1,n−1

λ′n−1,1 λ′n−1,2 · · · λ′n−1,n−1

· · · · · · · · ·
λ11
λ′11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(41)

The branching rule at each step is multiplicity-free, ensuring that the full basis can be recursively
constructed. The basis vector of sp(2n) (analog of Eq. (35)) is [6]:

ξΛ =

n∏
k=1

k−1∏
i=1

z
λ′
ki−λk−1,i

ki z
λ′
ki−λki

i,−k ·
l′kk−1∏
j=lkk

Zk,−k(j)

 ξ (42)

And the matrix elements (similar to Eq. (22)) can also be calculated.
At the end of this section, we briefly conclude the three main branching rules Eq. (2), Eq. (15),

Eq. (19) and Eq. (40):

• For u → u, the interlacing condition is given by λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥
λn, and the multiplicity is 1.

• For so → so, the interlacing condition is λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ |µn| or
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ |λn|, and the multiplicity is 1.

• For sp → sp, an auxiliary set of parameters νi (corresponding to λ′i) must be introduced to resolve
the multiplicities. The branching involves a two-stage interlacing condition: ν1 ≥ λ1 ≥ ν2 ≥
λ2 ≥ · · · ≥ νn ≥ λn ≥ 0 and ν1 ≥ µ1 ≥ ν2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ νn.

The corresponding GT bases are given in Eq. (20), Eq. (21) and Eq. (41).
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4 Conclusion
In this paper, we reviewed the branching rules of the classical Lie algebras u(n), so(n) and sp(2n),

and the associated construction of the Gelfand–Tsetlin (GT) bases via these branching structures. For
each class of Lie algebra, we adopted themost elementary approach to derive the results. Alternative and
more general frameworks exist, such as the polynomial realization method developed by Zhelobenko
[9], which provides a unified perspective across different types of Lie algebras.
To address the challenges arising in non-multiplicity-free branching, particularly in theBn → Bn−1,

Cn → Cn−1, and Dn → Dn−1 cases, we introduced the Mickelsson–Zhelobenko (M-Z) algebra.
This algebraic framework enables the construction of explicit basis vectors in multiplicity spaces. Fur-
thermore, we explored the connection observed by Molev [6] between the MZ algebra and the twisted
Yangian Y ±(2). It plays a crucial role in constructing generalized GT bases.
The GT bases yield explicit formulae for the action of the generators of Lie algebras on basis vectors,

thereby providing a powerful tool for representation computations, such as in quantum field theory and
nuclear physics.
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